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U L T I M A T E  V E L O C I T I E S  O F  P L A T E S  A C C E L E R A T E D  BY 

M A G N E T I C  F I E L D  

S. V. Stankevich and G. A. Shvetsov UDC 538.4 + 533.95 

The problem on acceleration of conductive plates by a magnetic field has been extensively studied. The ultimate 

velocities obtained during induction launching and railgun acceleration of metallic bodies were studied analytically and 

numerically [1-6]. Without considering the details, we note that an analytic description was carried out in these papers with 

a large number of simplifying assumptions which narrow the area of application of the results. At the same time the results 

obtained using sufficiently complete numerical models have an even narrower area of application by virtue of the bounded set 

of initial data govelning the acceleration dynamics, which makes impossible any conclusions on ultimate potentialities ef  the 

acceleration of  solid bodies by a magnetic field. 

In the present paper the ultimate kinematic characteristics of one- and multi-layer conductive plates accelerated by a 

nonstationary magnetic field are studied, as well as their dependence on accelerated mass and acceleration distance. One- and 

two-dimensional problems as applied to induction and railgun accelerators of conductive projectiles are considered. For the 

one-dimensional case the equations relating maximum admissible velocities of the plate and kinetic energy to accelerated mass 

and acceleration distance are derived. 

1. Statement of the Problem. Let us consider the acceleration of a conductive plate of finite thickness d by the 

pressure of a nonstationary magnetic field Ho(t ). The plate consists of N layers of different metals of thicknesses 

Axi(]sNi=lAxi ----- d). One edge of the plate slides down the surface of current-carrying railgun electrode in the direction X 

(Fig. I) with velocity V(t), thus forming an ideal metallic contact with the surface of the raiI I" 4. Let us assume that the plate 

size is unlimited in the direction - y ,  while the rail is unlimited in the directions - x  and x. Moreover, the entire system is 

infinite in the direction z, which is perpendicular to the plane of the figure, i.e.. the magnetic field in this problem has one 

component H z (hereafter'the subscript z will be omitted) and depends only on two coordinates x and y. 
During acceleration the magnetic field gradually diffuses in the plate, as a result of which its surface temperature T 

increases and can exceed the melting point or even the temperature of vaporization of the i-layer. In this case the projectile 

can fail, and/or a gap in the metallic contact can occur when passing to the acceleration regime with electric arc contact. Let 

us assume that during acceleration the maximum values of temperature in each layer should not exceed the critical values Ti* 

(melting or vaporation temperatures) for these layers. Let us term the velocity of the plate at which the temperature achieves 

its critical value in a certain layer the ultimate velocity for the given acceleration regime. In calculating the temperature 

distribution in the plate and rail we take into account the energy transfer due to the heat conductivity and assume that each of 

the subdomains Qi of the problem is characterized by constant values of density p, heat capacity c i, heat conductivity k i, and 

electric conductivity a i. 
The system of differential equations written in the reference system with respect to the moving conductive plate 

describes the problem stated 

'an van •  + 
a'--; - = ax  k ~r ax  j 

k 

p: 3 7 -  v = + T't + ;tL L ) 

(1.1) 

The boundary and initial conditions have the form 
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= - = o, H l = Ho(t ), "~nH] r5 Hlrj67, ,  8~]rL2,3,5.~,7 rt (1.2) 

T(x ,  y, O) = T O , H(x ,  y, O) = O. 

In Eqs. (1.1) the velocity V is nonzero only in the region of rails y __. 0; p, c, k, cr are step functions of x and y; /z is the 

magnetic permeability of vacuum. At the inner boundaries of the layers B i and contact boundary I'4, where the medium 

properties are discontinuous, the following conjunction conditions should be given: the continuity of temperatures, magnetic 

fields, heat flux, and tangential Constituents of electric fields, i.e., 

[Tl = IHl = [k a-~n] = [~ a-~n] = O for r,, a: t = l ..... N - I. (1.3) 

Here and in (1.2) n is the unit vector normal to the boundaries 1'i and B i. The equations of motion for the projectile may be 

written as follows: 
av ,,,~(t) ac 

M - - -  , V = - - "  
dt 2 dt ' (I .4) 

N 
M = ~ piAXi 

ill  (1.5) 

(M is the projectile mass per unit-area and L is the acceleration distance.) 

Let us write the system of equations (1. I)-(I .5) in dimensionless form. introducing the dimensionless variables "q, ~, 

r, 0, n, v, l, m, ~,/5, ~, and ~: which are connected with the dimensional variables by the relationships 

x = x ~ ,  y = y : ,  t = t r ,  H=t- th ,  m = m m ,  V= V., 

L =  xl ,  a = % d ,  p = p ,  f i ,  c =  c ~ ,  k = k k " ,  T =  T o +  TO. 

(1.6) 

As the scales %, Ps, Cs, ks we select the values of these quantities at the first layer cr 1, Ol, cl ,  kl- Furthermore, if we assume 

that the following correlations between the scales of transformations H s, T s, x s, V s, t s, M s hold, 

- I ,  - l , - - - L  = 1, t - ~  = 1 , - -  =% 
(1.7) 

and denote ho(r) = H0(tsr)/H s and 7 = kl/Xlat/plc t, then the system of equations (1.1)-(1.5) can be transformed to the 

dimensionless system of differential equations 

Here 

ah ah a(n(ohl) a(~(Ohll 
(1.8) 

i U t : N 
"o f h~(r)dT, l = -~~ f ( y  h2G(r)dr)dT, rn -- X/~,A~j i . 
m 

0 0 0 i l l  

(1.9) 

The boundary conditions and the conditions of the field conjunction at the boundaries are analogous to (1.2) and (1.3). The 

parameter v 0 in the last relationship of (1.7) can have an arbitrary value (including unitary one) and will be used hereinafter 

only to simplify the transition to the one-dimensional problem. 
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Fig. 1 

The six scale coefficients (H s, T s, x s, V s, t s, Ms) are connected by five equations; consequently,  usually only one 

coefficient can be specified arbi trar i ly,  and all the others can be expressed in terms of  it, using the correlat ions (1.7). Let us 

take T s as an arbi t rary  coefficient and choose a value of it such that for an arbi t rary instant of t ime r '  the solution of the 

system of equations (1.8) corresponds to a real physical process in which a value equal to the crit ical temperature of this 

layer Ti* is achieved in a certain layer i at the instant of the t' = tsr ' ,  and for the other layers the following relationships 

hold: 

T ( r ' ) m a x ( 0 ( $ ,  7, 3)) ~ ~ - To, t =  1 . . . . .  N. 
(1.10) 

If we define the dimensionless  critical temperature as 

and the t ransformation scale for temperature as 

/ 
max (O(~, 7, r))~ 

1 

(1.I1)  

r(~') - - -  

- T O A T (1.12) 

O*(r') 0"(r') ' 

then the correlat ions (1.10) will hold automatically. It should be noted that, by virtue of  the definit ion (1.11), 0* is a 

continuous function of  r ,  but only with a piecewise derivative. 

Using (1.12), we express  H s, T s, x s, V s, t s, and M s from (1.7) and substitute the relationships obtained in (1.6). 

After a series of  t ransformations we obtain 

Ho( Q = Hrho(Q/O*V2(r ' ) ;  (1.13) 

v ( o  = v~(uoO'(r'))-v~<O; 
(1.14) 

(VoO'(r'))v2 
L(r)  - l ( , ) ;  (1.15) 

~ I  Vr 

Plra(voO'Cr')) ~'2 . 

~O.I~ 
(i.i6) 

uoO'(~gr 
tC~) -  ~,,,lv ~ , 

(1.17) 
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T(~, ~, r) = AT~I 0(~, q, r) 
0*(r') 

+ To; 
(1.18) 

h(~. '7, r) 
H(~, r/, r) = H r 0.(r,)V2 , 

(1.19) 

where H T = (PlClATl*/iz) 1/2, V T = (clATI*/2) 1/2. 

Relationships (1.13)-(1.19) describe the variations in the appropriate physical values depending on dimensionless time 

r, the temperature in any of the layers achieving the critical value at r = r '  by virtue of the definitions (1.11) and (1.12), 

while the velocity V(r ' )  will be the ultimate one up to which the conductive projectile with the mass per unit area M(r ' )  can 

be accelerated at distance L(r ' ) .  

2. One-Dimensional  Case. Assume the induction acceleration of a conductive plate, i.e., there is no sliding contact. 

Then there will be neither terms with derivatives with respect to 77 nor terms with first derivative with respect to ~ in the 

system of equations (1.8). Let us assume the plate to be infinite in the directions y and z. Since in this case the velocity v is 

not involved in Eq. (I .8), the function O*(r) will not depend on the transformation scale for the equations of motion v o, which 

allows us to exclude the latter from Eq. (1.14)-(1.18). Moreover, let us seek the ultimate velocity which the projectile 

acquires at a given distance; in correlations (I .  13)-(1.19) we consider r = r '  and hereinafter omit the prime. 

Substituting v 0 derived from (1.15) into (1.14) and (1.16), we obtain 

V : V4r/3@crlL)V~t1~W; (2.1) 

M = P  t (2.2) 

where 

I 1 ~ 
0 

m20~ 

(2.3) 

12 

0 

m40"(r) 

(2.4) 

Note that in the case of the arbitrary function ho(r) the dimensionless critical temperature O*(r) involved in (2.3) and 

(2.4) depends on both r and m; however, if the field at the boundary is given as the power function 

ho(r, n) = r "/2, (2.5) 

then one can show that owing to invariance of the system (1.8) with respect to the transformation r '  = a2r, ~' = a t ,  h' = 

bh, 0' = b20 and self-similarity of the power function (i.e., (ax) n = a n xn), the expressions (2.3) and (2.4) will depend only 

on the ratio r/m 2. This allows us to derive the dependence V(M, n) with L = const using (2.1)-(2.4) from the known 

function O*(r) obtained from the solution of the system (1.8) for an arbitrary value m and the magnetic field at the boundary, 

which changes following the law (2.5). 

Let us consider the acceleration of a homogeneous plate when the magnetic field at the boundary changes according 

to (2.5). In this case 0* coincides with the maximum value of 0(~, r), dO*(r)/dr is a continuous function of  r,  and m = A~ I 

may be chosen equal to one. Let us find the maximum dependence V(M). For this purpose we calculate the derivative dV/dM 

and set it equal to zero. Using (2.1)-(2.5), we obtain the equation for determining the time r o corresponding to the maximum 

of the dependence V(M) 
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r dr n + 0 . (2.6) 

let us introduce the notation 

iv(n ) = It(to, n)F2t/3(ro, n), IM(n) = F2V3(r o, n), 
iu(n ) = ho('~o)/o' t /2( l~o), V=== = V(t'o), M,,pt = M( l ro ) ,  

then from (1.2) and (1.13) we obtain 

v= = ~/'(UoL)v%(n); 

(~}V 
3 

L ~,t, = p I ~ ( ~ ) ;  

(2.7) 

(2.8) 

H,,  = H#. (n) .  
(2.9) 

The quantities I H, I v, I M depend on the parameter 3,, which is equal to the ratio of the thermal conductivity to the coefficient 

of diffusion of the magnetic field in the metal [see (1.8)]. However, for the majority of metals this dependence can be 

neglected. The maximum relative error in this case is for copper, but it does not exceed 5 % (Fig. 2). 
The values of I H, I v, I M for n = 1-5 obtained from numerical solution of the system (1.8) and Eq. (2.6) are presented 

in Table 1. It is apparent that the dependence on n, i.e., eventually on the shape of the current pulse in the case of induction 

acceleration of conductive plates, is also weak. 

Table 2 presents the maximum values of ultimate velocity Vmax, optimum magnetic field amplitude Hopt, specific 

kinetic energy E, optimum mass per unit area Mopt, and the appropriate thickness of the accelerated plate d for a number of 

metals at acceleration distance L = 1 m, n = 1, 7 = 0, and critical temperature equal to the melting temperature of the 

given metal. The values are calculated from (2.7)-(2.9). 
Figure 2 shows the dependence of ultimate velocity on mass for tungsten (curves 1-3) and copper (curves 4-6), as 

well as for copper when 7 = 0, i.e., without regard for thermal conductivity (curves 7-9). Curves 1, 4, and 7 correspond to 

acceleration distance L = 0.5 m, curves 2, 5, and 8 are plotted for distance L = 1 m, and curves 3, 6, and 9 are for L = 2 

m a t n =  1. 
It should be noted that with small M the dependence V(M) approaches asymptotically the straight line V/M = const. 

This corresponds to the solution of the problem of acceleration of conductive plates in the thin-plate approximation cited in 

[1]. The other limiting case corresponding to high values of M (thick-plate approximation) can be obtained by using the 

known solution of  the problem of heating of a semi-infinite projectile by a current pulse given as the power function (2.5) 

with neglect of  the heat conductivity [1]: 

o* = e(r)J~., = r"~o(n), ~,(n) = 
(2.10) 

I 
= ~(r(nl2 + l)Ir'(nl2 + I12))', 

where l"(x) is the gamma function. 

This case conforms to M --, oo and holds true if the time of acceleration of the plate is much shorter than that of 

diffusion of the magnetic field through the plate of thickness d (t << /~crd2). Substituting (2.10) in (2.3) and (2.4), we obtain 

r I : 1 (2.11) 
It - m' (n + O,r ' 12 = m' (n + 0(. + 2~,(n) " 

Using (2.1) and (2.2) together with (2.11) and excluding the dependence on rim 2, we have 

v = V ~ q , / . ~ ( n ) / M ) V ' ,  
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TABLE 1 

t R 

0,951 
1,046 
1,075 
1,087 
1,093 

I V 

1,58 

1,66 
1,67 
1,67 
1,66 

I M 

0,927 
0,938 
0.930 
0,923 
0,917 

1,91 
2,09 
2,12 
2,12 
2,11 

T A B L E 2  

Metal 

Be 
Mg 
AI 
13 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Cu 
7.x 
Nb 
Mo 
At 
La 
Hf 
Ta 
W 
Re 
Os 
lr 
Pt 
Au 
Th 
U 

v~ km/sec 

30,9 
13,5 
15,2 
7,4 
9,5 
10,2 
4,6 
10,8 
11.7 
11,5 
14.1 
5,5 
9,6 
12,5 
9,5 
2,5 
4,3 
7,1 
10.0 
6.3 
7,0 
7.9 
5.2 
6,0 
3,8 
2,5 

~ t '  g/cm2 d, mm 

0,26 
0,43 
0,49 
5,38 
4,36 
4,16 
14.3 
3,23 
2,78 
2,8 

..1.33 
7,61 
4,36 
3,07 
1,81 
12,8 
15,7 
9,76 
6.18 
15,5 
11,4 
7,95 
12,9 
5,06 
11,2 
28,1 

1,42 
2,48 
1,82 
11.9 
7,16 
5,79 
19,2 
4,1 

3,16 
3,34 
1,49 
11,7 
5,05 
3,01 
1.72 
20,8 
11,8 
5,87 
3,22 
7.56 
5,04 
3,55 
6,01 
2,62 
9,57 
14,8 

.u c kA/cm 

514 
288 
346 
557 
646 
677 
572 
634 
637 
629 
531 
497 
655 
710 
416 
287 
556 
719 
807 
814 
770 
729 
6O8 
439 
416 
431 

E. kJ/cm 2 

125 
39 
57 
147 
197 
216 
155 
190 
192 
187 
133 
117 
203 
238 
82 
39 
146 
244 
308 
313 
280 
250 
174 
91 
82 
88 

where ~I,(n) = (n + 2)/((n + 1)~(n)). In this case the ultimate kinetic energy E~, does not depend on M: 

z p~T* 
E. =. 2 = pV~r.,,o(,O - 2 ~(")" (2.12) 

The values of  ~b(n) for n = 1-5 are presented in Table 1. The kinetic energy determined by the expression (2.12), as 

follows from Fig. 3, is the maximum kinetic energy that can be acquired by a conductive plate during induction acceleration. 

Figure 3 presents, for tungsten, the dependences V(M) and E(M) (lines 1 and 4), the asymptotical dependences conforming 

to V(M --, O) and V(M --, ~ )  (lines 2 and 3 correspond to the thin- and thick-plate approximation, respectively), and the value 

of the ultimate kinetic energy E~, (line 5) for L = 1 m, n = 1. 
Let us consider some results of the solution of the problem on acceleration of bimetaUic plates. Figure 4 shows the 

dependences of ultimate velocity vs mass for a tungsten-beryllium plate with L = 1 m, n = 1, and different mass ratios of 

the layers: 1) Be (100%), 2) Be (0), 3) Be (8.2%), 4) Be (25%), and 5) Be (36%). It is apparent that a considerable increase 

in maximum velocity is possible (in this case =60%);  at the same time, the optimal choice of  the thickness of the layers 

depends on the total mass of the plate, i.e., for each value M there is an approximate value MBe/M w at which the maximum 

velocity increment for the bimetallic plate is achieved. On the basis of these data, one can state the problem of search for the 

optimum combination of layers providing the ultimate velocity for a given total mass of the plate. 

3. Two-Dimensional Case. Given the moving metallic contact of the plate with the rails, consider the solution of the 

system of equations (1.8). Let the field at the boundary be set as before by the function (2.5). In this case 0* depends on ~0; 

therefore, the latter cannot be excluded from (1.14)-(1.16). Given the transformation scale T s, at any instant of time r all 

scales are determined uniquely from (1.7). The system of equations (1.8) with fixed value v 0 and various values of mj should 
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Fig. 2 

be solved to derive the dependence of ultimate velocity on mass. Then, by eliminating r from the obtained set of dependences 

V(mj, ~-), M(mj, 7-), L(mj, 7-), one can derive the dependences Vj(L), Mj(L) for L = const and interpolate them, for example, 

by constructing a slvline function. 

Figure 5 shows the dependences of ultimate velocity on mass for rails and projectiles made of tungsten (curve 2). and 

copper and tungsten respectively (curve 3) (here and in the other figures L = 1 m, n = 1). Curve 1, corresponding to 

induction acceleration of the tungsten plate, is presented for comparison. Given the moving contact, the considerable decrease 

of the maximum of ultimate velocity and optimum mass is apparent, although the general character of the dependence of 

ultimate velocity on mass is qualitatively the same as that obtained for the one-dimensional case. At M ---, 0 both one- and 

two-dimensional dependences material. This is due to the fact that when accelerating very thin plates, volume heating of the 

projectile away from the zone of metallic contact appears to be predominant, since the increase in heat release resulting from 

the current concentration in the zone of moving metallic contact is balanced by heat transfer in the rails. 

In the two-dimensional case the rate of heating of the projectile near the point with maximum temperature depends 

essentially on its heat conductivity, because this point is on the plate surface when x = 0 near the rails whose temperature at 

considerably high velocity differs little from the initial one. As a result, significant temperature gradients and, consequently, 

high-power heat flux from the projectile to the rail appear in this zone. 

Figure 6 shows the effect of heat conductivity. Curves 1 and 3 represent the dependences of  ultimate velocity on 

mass for tungsten (k = kw) and copper (k = kcu), curve 2 is obtained for tungsten, but with k = kcu, and curve 4 is for Cu 

with k = k w. In comparing lines I and 2 with 3 and 4, one can see the considerable influence of  heat conductivity on 

ultimate velocity. 
Figure 7 shows that in the case of acceleration of bimetallic projectiles in railguns the ultimate velocity can be 

increased. Here lines 1 and 2 correspond to acceleration of homogeneous projectiles of tungsten and beryllium, and curve 3 

is for a bimetallic plate with mass ratio W 4 0 % - B e  60%. In this case the maximum relative velocity increment ( - 6 0 % )  is 

achieved when the total mass of  the plate is 7 kg/m 2. The dependences presented in Figs. 6 and 7 are obtained for copper 

electrodes. 

The analysis of induction and railgun acceleration of metallic plates certainly does not take into account the many 

peculiarities of real physical processes like the nonlinear diffusion of the magnetic field, the three-dimensional character of 

distribution of the magnetic field leading to the reduction of effective magnetic pressure, the friction in the moving contact 

causing additional heat release in the contact zone, etc. Thus, the above absolute values of velocity and mass can differ 

considerably from those achieved in real launching. However, all the effects enumerated lead to a reduction of the final 

velocity. Therefore, the above results may be considered as the ultimate ones for any acceleration process realized in 

practice. Thus, if we require that the increase in temperature of the accelerated plate during the acceleration process due to 

Joule heating does not exceed the critical value(s) for acceleration of multi-layer projectiles, then we can make the following 

assertions. 
For the one-dimensional ease: 1) There is an ultimate velocity up to which a plate made of  a given metal can be 

accelerated. This velocity depends mainly on the mass of the accelerated plate and weakly depends on the shape of the 

current pulse (at least for the case where the current pulse is described by a monotonically growing function). 2) There is an 

optimum plate thickness (or mass per unit area) at which the ultimate velocity achieves the maximum value. This maximum 

velocity and optimum mass may be calculated from the analytical relationships (2.7) and (2.8). 3) There is a limit of kinetic 
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energy per unit area which can be acquired by a plate. This limit is achieved when the plate mass exceeds the optimum value. 

4) For plates made of  different metals the values of optimum mass and maximum velocity can be considerably different, i.e., 

to achieve the maximum velocity the choice of the material for the plate should depend on the accelerated mass (see Table 2). 

5) A considerable increase in the ultimate velocity for multi-layer plates is possible, and for maximum relative velocity gain 

the ratio of the layer thicknesses depends on the mass. 

For  the two-dimensional  case: 1) All of the qualitative assertions made for induction acceleration hold true for the 

acceleration of metallic projectiles in railguns. 2) The presence of a moving metallic contact leads to a significant reduction 

of the maximum ultimate velocity and optimum mass. 3) For correct calculations of the temperature pattern in the zone of 

moving contact the heat transfer due to heat conductivity should be taken into account. 4) An increase in rail conductivity as 

compared to the projectile conductivity leads to an increase in the maximum values of the ultimate velocity, and at ar -" ~ 

the results agree with those for induction acceleration. 
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